The research on the influence of titanium-tantalum-tungsten-cobalt hard alloy on the tribological properties of phenylone C-2

  • A.-M.V. Tomina Dniprovsk State Technical University, Ukraine
  • O.I. Burya Dniprovsk State Technical University, Ukraine
  • Ye.E. Lytvynova Dniprovsk State Technical University, Ukraine
  • V.M. Gavrish Dniprovsk State Technical University, Ukraine
Keywords: aromatic polyamide, phenylone C-2, hard alloy, carbide, intensity of linear wear, abrasion index, friction coefficient, microhardness


Polymer composite materials based on aromatic polyamides, filled with dispersed fillers (metal powders, graphite, silicon dioxide and titanium, etc.) are some of the most widely used tribotechnical materials for friction nоdes and machinery for automobile and agricultural machinery now. The use of dispersion-hardened polymer composite materials can reduce the cost of manufacturing details at the same time increasing their reliability and working resource. The influence of the content of titanium-tantalum-tungsten-cobalt hard alloy on the tribological properties of composite materials based on phenylone C-2 aromatic polyamide is considered in the article. It has been found that the introduction of titanium-tantalum-tungsten-cobalt hard alloy reduces the intensity of linear wear and abrasion index of phenylone by 35 and 20%, respectively. It has also been found that the effective content of the filler in the polymer binder is 3 mass.%. Taking into account all the above, this material can be recommended for the manufacturing of parts of vehicles, road cars and agricultural machines that operate in aggressive conditions, at elevated temperatures, under the influence of abrasive particles and variable loads


1. Sokol`skaya, M.K., Kolosova, A.S., Vitkalov, I.A., Torlova, A.S., & Pikalov, E.S. (2017). Svyazuyushhie dlya polucheniya sovremenny`kh polimerny`kh kompoziczionny`kh materialov [Binders for the production of modern polymer composite materials]. Fundamental`ny`e issledovaniya – Fundamental research. 10, 290-295 [in Russian].
2. Kablov, E.N., Semenova, L.V., Petrova, G.N., & Perfilova, D.N. (2016). Polimerny`e kompoziczionny`e materialy` na termoplastichnoj matricze [Thermoplastic matrix polymer composites]. Khimiya i khimicheskaya tekhnologiya – Chemistry and chemical technology. 10, 61-71 [in Russian].
3. Bejder, E`.Ya., & Petrov, G.N. (2015). Termoplastichny`e svyazuyushhie dlya polimerny`kh kompoziczionny`kh materialov [Thermoplastic binders for polymer composite materials]. Trudy` VIAM. – Proceedings of VIAM. 11, 40-49 [in Russian].
4. Utevskaya, L.V. (2010). Polimerny`e kompoziczionny`e materialy` konstrukczionnogo naznachenie [Polymeric composite materials for structural purposes]. Visnyk Kharkivskoi derzhavnoi akademii dyzainu i mystetstv – Bulletin of Kharkiv State Academy of Design and Arts. 1, 59-62 [in Russian].
5. Burya, A.I., & Yeriomina, Ye. A. (2015). The Effect of Various Metallic Filling Materials on the Wear Resistance of Aromatic Polyamide-Based Composite Materials. J. of Friction and Wear. 37, 2, 151-154.
6. Tomina A.-M. . (2019). Vstanovlennia zakonomirnostei vplyvu orhanichnykh volokon na vlastyvosti ta strukturu aromatychnoho poliamidu fenilon [Establishing patterns of influence of organic fibers on the properties and structure of aromatic polyamide phenylone]. Candidate’s thesis. Kamianske [in Ukraine].
7. Buria, O.I., Yeromina, K.A., Lysenko, O.B., Konchicz, A.A., & Morozov, A.F. (2019). Polimerni kompozyty na osnovi termoplastychnykh viazhuchykh [Polymer composites based on thermoplastic binders]. Dnipro: Seredniak Т.К. [in Ukraine].
8. Kabat, O.S., & Sy`tar V.I. (2016). Termostojkie kompozity` na osnove fenilona S2 s vy`sokim urovnem tekhnolo-gichnosti pri pererabotki v izdeliya [Heat-resistant composites based on phenylone C2 with a high level of technology during processing into products]. Voprosy` khimii i khimicheskoj tekhnologii. – Chemistry and chemical technology issues, Vol.107, 3, 60-64 [in Russian].
9. Ruiz, R., Trigo-López, M., & García F. (2017). Functional Aromatic Polyamides. J. Polymers. 9, 1-44.
10. Krasnov, A.P., Rashkovan, I.A., & Afonicheva, O.V. (2006). Trenie i iznashivanie uglerodoplastov na osnove poliamidov razlichnogo khimicheskogo stroeniya [Friction and wear of carbon plastics based on polyamides of various chemical structures]. Trenie i iznos – Friction and wear Trenie i iznos, Vol.27, 5, 527-534.
11. Burya, O.I. Tomina, A.-M.V., & Lytvynova, Ye.E. (2019). Vplyvu dyspersnoho karbidnoho napovniuvacha na trybolohichni vlastyvosti kompozy-tiv na osnovi fenilonu C-2 [The influence of dispersed carbide filler on tribological properties of composites based on phenylone C-2]. Problemy tertia ta znoshuvannia. – J. Friction and wear problems. 2, 13-18.
12. Okhlopkova, A.A., Petrova, P.N., Popov, S.N., & Slepczova S.A. (2008). Polimerny`e kompoziczionny`e materialy` tribotekhnicheskogo naznacheniya na osnove politetraftore`tilena [Polymeric composite materials for tribotechnical purposes based on polytetrafluoroethylene]. Rossijskij khimicheskij zhurnal – Russian chemical journal. 3, 147-152.