The determination of the information frequencies in the frame of the acoustic emission signals from the friction zone of tribosystems

Authors

  • K.A. Fenenko Kharkov National Technical University of Agriculture named after Petro Vasylenko

DOI:

https://doi.org/10.31891/2079-1372-2020-97-3-6-13

Keywords:

tribosystem; information frequencies; acoustic emission; frequency range; diagnosis; constructive, technological, operational factors.

Abstract

Based on the analysis of the works devoted to the selection of informative AE parameters for the diagnosis of tribosystems, in a theoretical way the information frequency ranges in the AE signal frame, where the maximum amplitudes values are observed, have been established. It has been theoretically and experimentally established that the information frequencies depend on the following groups of factors: the constructive; technological and operational ones. The degree of influence of the factors on the change in the frequency range is established. The operational factors (slip speed and load) change the frequency range from 106 to 584 kHz, the technological factors (roughness of the friction surfaces) change the frequency range from 118 to 618 kHz, the constructive factors (the size of the friction area of the stationary triboelement) change the frequency range from 140 to 530 kHz. It has been concluded that for the effective diagnosis of tribosystems, it is necessary to previously determine the information frequency range taking into account the factors listed above.

The obtained results were confirmed experimentally with the calculation of the Fisher and Cochrane criteria, which allows one to state about the presence of a correlation between the theoretical values of the information frequencies generated by the tribosystem and the experimental values of the frequencies, where the maximum amplitudes were recorded, the correlation coefficient r = 0,88.

The present analysis can be the basis for the development of a diagnostic method for tribosystems during their operation, which will increase the robustness and information content of the AE method.

References

1. Sviridenok, A.I. Akusticheskiye i elektricheskiye metody v tribotekhnike / A.I. Sviridenok [i dr.] ; pod red. V.A. Belogo. – Minsk : Nauka i tekhnika, 1987. – 280 s. [Russian]
2. Shchavelin, V.M., Sarychev G.A. Akusticheskiy kontrol' uzlov treniya YAEU.– M. : Energoatomizdat, 1988. – 176 s. [Russian]
3. Potekayev, A.I., Plotnikov V.A. Akusticheskaya dissipatsiya energii pri termouprugikh martensitnykh prevrashcheniyakh. – Tomsk: Izd-vo NTL, 2004. – 196 s. [Russian]
4. Makarov, S.V., Plotnikov V.A., Potekayev A.I. Vysokotemperaturnaya plasticheskaya deformatsiya i akusticheskaya emissiya alyuminiya v slaboustoychivom sostoyanii / Izvestiya vuzov. Fizika. – 2013. – T. 56. – №6. – S. 23–30. [Russian]
5. Baranov A.V., Vagner V.A., Barsukov G.V. Diagnostika raboty par treniya / Polzunovskiy vestnik, 2005, №2(ch.2), s. 149-152. [Russian]
6. Kolubayev Ye.A., Rubtsov V.Ye., Kolubayev A.V. Osobennosti izlucheniya akusticheskogo signala pri sukhom trenii skol'zheniya / Obrabotka metallov. Issledovaniya po FTSP, 2013, №1(58), s.69-74. [Russian]
7. Vinogradov A., Lazarev A., Linderov M., Weidner A., Biermann H. Kinetics of deformation processes in high-alloyed cast transformation-induced plasticity/twinning-induced plasticity steels determined by acoustic emission and scanning electron microscopy: Influence of austenite stability on deformation mechanisms / Acta Materialia, 2013, Vol. 61, №7. P. 2434-2449. [English]
8. Linderov M., Segel C., Weidner A., Biermann H., Vinogradov A. Deformation mechanisms in austenitic TRIP/TWIP steels at room and elevated temperature investigated by acoustic emission and scanning electron microscopy / Materials Science and Engineering: A. 2014, Vol. 597. P. 183-193. [English]
9. Müller A., Segel C., Linderov M., Vinogradov A., Weidner A., Biermann H. The Portevin-Le Châtelier effect in a metastable austenitic stain-less steel / Metallurgical and Materials Transactions A. 2016. Vol. 47. №1. P. 59-74. [English]
10. Makarov, S.V., Plotnikov V.A., Kolubayev Ye.A. Deformatsionnoye povedeniye alyuminiyevo-magniyevogo splava v usloviyakh termomekhanicheskogo nagruzheniya / Izvestiya AltGU. – 2015. – № 2. – S. 36–39. [Russian]
11. Makarov, S.V., Plotnikov V.A., Lysikov M.V. i dr. Nakopleniye deformatsii i akusticheskaya emissiya v usloviyakh termomekhanicheskogo nagruzheniya alyuminiyevo-magniyevogo splava / Izvestiya AltGU. 2015, № 2. S. 40–44. [Russian]
12. Makarov, S.V., Plotnikov V.A., Lysikov M.V. et al. Acoustic emission and effect of stepwise deformation in aluminum-magnesium alloy / Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures AIP Conf. Proc. 2015. 1683, 020138-1–020138-5. [English]
13. Makarov, S.V., Plotnikov V.A., Kolubayev Ye.A. Zakonomernosti akusticheskoy emissii v usloviyakh plasticheskoy deformatsii alyuminiyevo-magniyevogo splava pri neizotermicheskom nagruzhenii / Iz-vestiya AltGU. 2014. № 1. S. 252–256. [Russian]
14. Makarov, S.V., Lysikov M.V., Kolubaev E.A. et al. The deformation and acoustic emission of aluminum-magnesium alloy under non-isothermal thermo-mechanical loading / Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures AIP Conf. Proc. 2015. 1683, 020139-1–020139- 5. [English]
15. Voytov V.A., Zakharchenko M.B. Modelirovaniye protsessov treniya iznashivaniya v tribosistemakh v usloviyakh granichnoy smazki. Chast' 1. Raschet skorosti raboty dissipatsii v tribosistemakh / Problemi tribologíí̈. – 2015. – № 1. – S. 49-57. [Russian]

Downloads

Published

2020-09-28

How to Cite

Fenenko, K. (2020). The determination of the information frequencies in the frame of the acoustic emission signals from the friction zone of tribosystems. Problems of Tribology, 25(3/97), 6–13. https://doi.org/10.31891/2079-1372-2020-97-3-6-13

Issue

Section

Articles