Influence of carbon fiber on tribotechnical characteristics of polyetheretherketone

  • O.I. Buria Dniprovsk State Technical University
  • A.-M.V. Tomina Dniprovsk State Technical University
  • I.I. Nachovnyi Ukrainian State University of Chemical Technology
Keywords: aromatic polyetheretherketone, carbon fiber, wear, friction coefficient, ultrasonic control, microhardness, friction units

Abstract

Superstructural thermoplastic polymers, including polyetheretherketone, are now widely used in many industries. However, its rather high coefficient of friction and insufficient wear resistance limits its use in friction units of machines and mechanisms. This article covers the influence of T700 Toray carbon fiber on the tribotechnical characteristics of Victrex150G aromatic polyetheretherketone. As a result of the researches it has been found out that the developed carbon plastics exceed the base polymer in friction coefficient and wear 1.2-1.54 and 1.7-8.8 times, respectively, due to the formation of a stable "transfer film" on the steel counterbody (so-called antifriction layer): finely dispersed particles of the polymer matrix and crushed products of wear of carbon fiber penetrate into the microcavities of the counterbody. This is confirmed by the fact that the roughness of carbon plastics has decreased by 50 % in cpomparison with the base polymer. The greatest improvement in tribological properties is observed at 10 mass%, of carbon fiber content, then the properties get worse. That can be explained by the increase in defects of the material due to the dominant loosening at the "polymer-fiber" boundary that confirms the results of microhardness and ultrasonic control. The obtained results show that the composite with an effective carbon fiber content (10 mass%) can be recommended for the manufacture of parts of movable joints of machines and mechanisms operating under friction without lubrication in various industries: agricultural, automotive and textile. etc.

References

1. Petrovskaya, E.A (2017). Obespechenie vy`sokoj iznosostojkosti par treniya [Ensuring high wear resistance of friction pairs]. Problemy` i perspektivy` razvitiya agropromy`shlennogo kompleksa Rossii : mater. vseros. nauch.-prakt. konf. 4, 70–72
Danilova, S.N., Okhlopkova, A.A., Gavril`eva, A.A., Okhlopkova, T.A., Borisova, R.V., D`yankov A.A. (2016). Iznosostojkie polimerny`e kompoziczionny`e materialy` s uluchshenny`m mezhfazovy`m vzaimodejstviem v sisteme «polimer-volokno» [Wear-resistant polymer composite materials with improved interfacial interaction in the «polymer-fiber» system]. Vestnik severo-vostochnogo federal`nogo universiteta im. M.K Ammosova, 5 (55), 81–92.
2. Kolosova, A.S., Sokol`skaya, M.K., Vitkalova, I.A., Torlova, A.S., Pikalov, E.S. (2018). Sovremenny`e metody` polucheniya polimerny`kh kompoziczionny`kh materialov i izdelij iz nikh [Modern methods of obtaining polymer composite materials and products from them]. Mezhdunarodny`j zhurnal prikladny`kh i fundamental`ny`kh issledovanij, 8, 123–129.
3. Kuzneczov, A.A., Semenova, G.K., Svidchenko, E.A. (2009). Konstrukczionny`e termoplasty` kak osnova dlya samosmazy`vayushhikhsya polimerny`kh kompoziczionny`kh materialov antifrikczionnogo naznacheniya [Structural thermoplastics as a basis for self-lubricating polymer composite materials for antifriction purposes]. Voprosy` materialovedeniya, 1(57), 116–126.
4. Gunyaev, G.M., Kablov, E.N., Aleksashin, V.M. (2010). Modificzirovanie konstrukczionny`kh ugleplastikov uglerodny`mi nanochasticzami [Modification of structural carbon plastics with carbon nanoparticles]. Trudy`VIAM, 1, LIV.5.
5.Gulyaev, I.N., Vlasenko, F.S., Zelenina, I.V., Raskutin, A.E. (2014). Napravleniya razvitiya termostojkikh ugleplastikov na osnove poliimidny`kh i geterocziklicheskikh polimerov [Development trends of heat-resistant carbon plastics based on polyimide and heterocyclic polymers]. Trudy` VIAM, 1
6. Panin, S.V., Nguen, Dy`k An`, Kornienko, L.A., Buslovich, D.G., Lerner, M.I. (2020). Mekhanicheskie i tribotekhnicheskie svojstva nanokompozitov na osnove termoplastichnoj matriczy` polie`fire`firketona [Mechanical and tribotechnical properties of nanocomposites based on a thermoplastic matrix of polyetheretherketone]. Materialy` 10-j Mezhdunarodnoj nauchno-tekhnicheskoj konferenczii Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvodstva, 207–208.
7. Burya, A.I., Arlamova, N.T., Yeryomina, E.A., Tomina, A.-M.V. (2015). Ugleplastiki na osnove polie`fire`firketona. Struktura i svojstva [Carbon fiber reinforced plastics based on polyetheretherketone. Structure and properties]. Dizajn. Materialy`. Tekhnologiya, 5 (40), 15–18.
8. Burya, A.I., Arlamova, N.T., Tomina, A.-M.V., Czuj Khun (2015). Issledovanie teplofizicheskikh kharakteristik ugleplastikov na osnove polie`fire`firketona [Investigation of the thermophysical characteristics of carbon plastics based on polyetheretherketone]. Relaksaczionny`e yavleniya v tverdy`kh telakh: tezisy` dokladov XXXIII Mezhdunarodnoj nauchnoj konferenczii, posvyashhennoj 100-letiyu so dnya rozhdeniya V.S. Postnikova, Voronezh, 78.
9. Kragel`skij, I.V. (1968). Trenie i iznos. [Friction and wear]. Mashinostroenie, 480 p.
10. Okhlopkova, A.A., Vasil`ev, S.V., Gogoleva, O.V. (2011). Razrabotka polimerny`kh kompozitov na osnove politetraftore`tilena i bazal`tovogo volokna [Development of polymer composites based on polytetrafluoroethylene and basalt fibers]. Neftegazovoe delo, 6, 404–410.
11. Burya, A.I., Naberezhnaya, O.A., Demchenko, S.V., Khomyak, Yu.V. (2016). Izuchenie vliyaniya soderzhaniya uglerodny`kh volokon na svojstva ugleplastikov na osnove polifenilensul`fida [Study of the effect of carbon fiber content on the properties of carbonplastic based on polyphenylene sulfide]. Kompozitny`e materialy`, 9 (2), 77–81.
12. E`kho-impul`sny`j metod [Echo-pulse method]. Elektronnij resurs – Rezhim dostupu: https://studref.com/310969/tehnika/impulsnyy_metod
Published
2020-12-24
How to Cite
Buria, O., Tomina, A.-M., & Nachovnyi, I. (2020). Influence of carbon fiber on tribotechnical characteristics of polyetheretherketone. Problems of Tribology, 25(4/98), 27-32. https://doi.org/https://doi.org/10.31891/2079-1372-2020-98-4-27-32
Section
Articles