Kurpe O.G., Kukhar V.V. Process development for production of hot rolling coils of steel grade S460MC at wide-strip rolling mill "1700".
Keywords:
thermomechanical controlled rolling, hot-rolled coils, rolling force, temperature conditions, technology, steel grade S460MCAbstract
Process development for production of hot-rolled coils of steel grade S460MC by means of thermomechanical controlled rolling (ТМСР) in accordance with EN 10149-2 at the rolling mill 1700 PJSC “ILYICH IRON AND STEEL WORKS” has been made. The pilot lot of hot-rolled coils of S460MC steel grade with dimensions 2,5 × 1000 мм has been produced and the research of the mechanical properties has been completed. For the first time, the integrated technology for coils thermomechanical rolling of steel grade S460MC in accordance with EN 10149-2 has been developed for rolling at 1700 rolling mill. The controlled air-cooling of coils up to 450 оС after coiling has been implemented in the developed technology. This allows the reduction of air scale layer thickness and improves the surface quality including that for the further processing. The technology has been developed with implementation of the general requirements for the rolled products production by means of thermomechanical controlled rolling by applying the mathematical model of the technological process. The manufacturing possibility of rolled products of steel grade S460MC has been proved utilizing the existing 1700 rolling mill facilities, with no exceeding of the designed capability when utilizing the equipment and without any modernization procedures involved.
References
2. Militzer M. Thermomechanical Processed Steels Reference Module in Materials Science and Materials Engineering Comprehensive, Materials Processing. Vol. 1. 2014. pp. 191–216.
3. Zinchenko Yu. A. Prospects of the technology used to make skelp at the Azovstal metallurgical combine. Yu. A. Zinchenko, A. G. Kurpe, O. A. Bagmet. Metallurgist. Vol. 52, Nos. 7–8. 2008. pp. 461–463.
4. LI Hai-jun. Development of New Generation Cooling Control System After Rolling in Hot Rolled Strip Based on UFC. LI Hai-jun, LI Zhen-lei, YUAN Guo, WANG Zhao-dong, WANG Guo-dong. Journal of Iron and Steel Research. International. 2013. 20(7). pp. 29–34.
5. LIU En-yang. Algorithm Design and Application of Laminar Cooling Feedback Control in Hot Strip Mill. LIU En-yang, ZHANG Dian-hua, SUN Jie, PENG Liang-gui, GAO Bai-hong, SU Li-tao. Journal of Iron and Steel Research. International. 2012. 19(4). pp. 39–42.
6. Kukhar Volodymyr. Designing of induction heaters for the edges of pre-rolled wide ultrafine sheets and strips correlated with the chilling end-effect. Volodymyr Kukhar, Andrii Prysiazhnyi, Elena Balalayeva, Oleksandr Anishchenko. Modern Electrical and Energy System MEES’2017. IEEE. Kremenchuk. Ukraine. Kremenchuk Mykhailo Ostrohradskyi National University. November 15–17. –2017. pp. 404–407.
7. Yunbo Xu. Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels. Yunbo Xu, Yongmei Yu, Xianghua Liu, Guodong Wang. Journal of University of Science and Technology. Beijing. Vol. 15.– 2008. pp. 396–401. DOI: https://doi.org/10.1016/S1005-8850(08)60075-4.
8. Korczak P. Investigation of microstructure prediction during experimental thermo-mechanical plate rolling. P. Korczak, H. Dyja. Journal of Materials Processing Technology. 109. 2001. pp. 112–119.
9. Xiangwei Kong. Optimization of mechanical properties of low carbon bainitic steel using TMCP and accelerated cooling. Xiangwei Kong, Liangyun Lan. 11th International Conference on Technology of Plasticity. ICTP. 2014. pp. 19–24. DOI: https://doi.org/10.1016/j.proeng.2014.09.136.
10. Sir Harshad Bhadeshia. Thermomechanical Treatment of Steels. Microstructure and Properties (Fourth edition). 2017.– pp. 271–301. DOI: https://doi.org/10.1016/B978-0-08-100270-4.00010-X.
11. V. Carretero Olalla. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters. V. Carretero Olalla, V. Bliznuk, N. Sanchez, P. Thibaux, L.A.I. Kestens, R.H. Petrov. Materials Science & Engineering A 604. – 2014. pp. 46–56, DOI: https://doi.org/10.1016/j.msea.2014.02.066.
12. Zhao J. A Novel thermo-mechanical controlled processing for large-thickness microalloyed 560 MPa (X80) pipeline strip under ultra-fast cooling. J. Zhao, W. Hu, X. Wang, J. Kang, Y. Cao, G. Yuan, H. Di, R.D.K. Misra. Materials Science & Engineering A 673. – 2016. – pp. 373–377.
13. Zhao J. Effect of microstructure on the crack propagation behavior of microalloyed 560 MPa (X80) strip during ultra-fast cooling. J. Zhao, W. Hu, X. Wang, J. Kang, G. Yuan, H. Di, R.D.K. Misra. Materials Science & Engineering A 666. 2016. pp. 214–224, DOI: https://doi.org/10.1016/j.msea.2016.04.073.
14. TAN Wen. Artificial Neural Network Modeling of Microstructure During C-Mn and HSLA Plate Rolling. TAN Wen, LIU Zhen-yu, WU Di, WANG Guo-dong. Journal of Iron and Steel Research. International. 2009. 16(2). pp. 80–83. DOI: https://doi.org/10.1016/S1006-706X(09)60032-7.
15. DONG Rui-feng. Microstructures and Properties of X60 Grade Pipeline Strip Steel in CSP Plant. DONG Rui-feng, SUN Li-gang, LIU Zhe, WANG Xue-lian, LIU Qing-you. Journai of Iron and Steei Research. International. 2008. pp. 71–75. DOI: https://doi.org/10.1016/S1006-706X(08)60035-7.
16. Gervasyev Alexey. An approach to microstructure quantification in terms of impact properties of HSLA pipeline steels. Alexey Gervasyev, Victor Carretero Olalla, Jurij Sidor, Nuria Sanchez Mouriño, Leo A.I. Kestens, Roumen H. Petrov. Materials Science & Engineering A 677. 2016. pp. 163–170.
17. Bagmet O.A. Formirovanie optimal'nyh struktur i svojstv pri provedenii kontroliruemoj prokatki trubnyh stalej, soderzhashhih niobij. Avtoreferat dis. M. «Grafiks V». 2007. 23 S.
18. Pat. 98214 Ukrai'na, MPK B21C 37/08, B21B 1/32, C22C 38/00, C21D 8/02, C21D 8/10, B23K 9/025. Sposib vyrobnyctva stalevyh vysokomicnyh elektrozvarnyh odnoshovnyh trub velykogo diametra dlja magistral'nyh truboprovodiv. Livshyc D.A., Zinchenko Ju.A., Shahpazov Je.H., Matrosov Ju.I., Ganoshenko I.V., Goman S.V., Shalimov S.Ja., Kumurzhy Je.V., Volodars'kyj V.V., Loskutov O.Ju., Kojfman O.A., Kurpe O.G.; vlasnyk PUBLIChNE AKCIONERNE TOVARYSTVO "METALURGIJNYJ KOMBINAT "AZOVSTAL''", PUBLIChNE AKCIONERNE TOVARYSTVO "HARCYZ''KYJ TRUBNYJ ZAVOD". № a 2010 11473; zajava 27.09.2010; publ. 25.04.2012, Bjul.№ 8. 7 s.
19. Pat. 96097 Ukrai'na, MPK B21C 37/08, C22C 38/00, C21D 1/00, B21B 1/22, B23K 9/00. Sposib vyrobnyctva stalevyh vysokomicnyh elektrozvarnyh dvoshovnyh trub velykogo diametra dlja magistral'nyh truboprovodiv. Livshyc D.A., Zinchenko Ju.A., Shahpazov Je.H., Matrosov Ju.I., Ganoshenko I.V., Goman S.V., Shalimov S.Ja., Kumurzhy Je.V., Volodars'kyj V.V., Loskutov O.Ju., Kojfman O.A., Kurpe O.G.; vlasnyk PUBLIChNE AKCIONERNE TOVARYSTVO "METALURGIJNYJ KOMBINAT "AZOVSTAL''", PUBLIChNE AKCIONERNE TOVARYSTVO "HARCYZ''KYJ TRUBNYJ ZAVOD". № a201011469; zava 27.09.2010; publ. 26.09.2011, Bjul. № 18. 5 s.
20. Vahid Javaheria. Effect of niobium and phase transformation temperature on the microstructure and texture of a novel 0.40% C thermomechanically processed steel. Vahid Javaheria, Nasseh Khodaieb, Antti Kaijalainena, David Portera. Materials Characterization. 142. 2018. pp. 295–308.
21. Bright G. W. Variability in the mechanical properties and processing conditions of a High Strength Low Alloy steel. G. W. Bright, J. I. Kennedy, F. Robinson, M. Evans, M. T. Whittaker, J. Sullivan, Y. Gao. Procedia Engineering. 10. 2011. pp. 106–111. DOI: https://doi.org/10.1016/j.proeng.2011.04.020.
22. TAN Wen. Effects of TMCP Parameters on Microstructure and Mechanical Properties of Hot Rolled Economical Dual Phase Steel in CSP. TAN Wen, HAN Bin, WANG Shui-ze, YANG Yi, ZHANG Chao, ZHANG Yong-kun. Journal of Iron and Steel Research. International. 2012. 19(6). pp. 37–41.
23. Tang S. Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra Fast Cooling (UFC) versus Accelerated Cooling (ACC). S. Tang, Z.Y. Liu, G.D. Wang, R.D.K. Misra. Materials Science & Engineering A 580, 2013. pp. 257–265. DOI: https://doi.org/10.1016/j.msea.2013.05.016.
24. Pat. 110812 Ukrai'na, MPK B21B 1/46. Sposib vyrobnyctva garjachekatanogo prokatu pidvyshhenoi' micnosti. Zinchenko Ju.A., Pismar'ov K.Je., Kurpe O.G., Murashkin O. V., Vasyl'chenko S.Je., Merkulova N.O., Chalenko O.G., Negrij S.D., Kulish S.V.; vlasnyk PRYVATNE AKCIONERNE TOVARYSTVO "MARIUPOL''S''KYJ METALURGIJNYJ KOMBINAT IM. ILLIChA". № u 2016 03353; zajava 31.03.2016; publ. 25.10.2016, Bjul.№ 20. 4 s.
25. Pat. 121374 Ukrai'na, MPK B21B 1/46. Sposib vyrobnyctva garjachekatanogo prokatu pidvyshhenoi' micnosti. Zinchenko Ju.A., Pismar'ov K.Je., Kurpe O.G., Vasyl'chenko S.Je., Merkulova N.O., Chalenko O.G., Negrij S.D., Kulish S.V.; vlasnyk PRYVATNE AKCIONERNE TOVARYSTVO "MARIUPOL''S''KYJ METALURGIJNYJ KOMBINAT IM. ILLIChA". № u 2017 01785; zajava 24.02.2017; publ. 11.12.2017, Bjul.№ 23. 4 s.0
26. Maksymenko O. P. Teoretycheskyj analyz momenta pry prokatke s natjazhenyem polos. O. P. Maksymenko, A. G. Prysjazhnыj, V. V. Kuhar', E. V. Kuz'myn. Obrabotka materyalov davlenyem : sb. nauch. tr. DGMA. – Kramatorsk. DGMA, 2017. № 1 (44). S. 199–203.
27. Kuhar' V. V. Utochnenye metodyky rascheta teplovh poter' metalla na neprerыvnыh stanah gorjachej prokatky. V. V. Kuhar', A. G. Kurpe. Obrabotka materyalov davlenyem sb. nauch. tr. DGMA. Kramatorsk DGMA, 2018. № 1 (46). S. 159–166.
28. Kurpe O. G. Utochnennja rozrahunku teplovyh vtrat metalu na stanah Stekkelja. O. G. Kurpe, V. V. Kuhar, Je. V. Zmaznjeva. Problemy trybologii' Problems of Tribology. 2018. № 1. S. 78–84.
29. Kuhar V. V., Kurpe O. G. Rozrobka tehnologii' vyrobnyctva lystovogo prokatu tovshhynoju 4 mm na stani 3200 zavodu Trametal SpA. Metallurgycheskaja y gornorudnaja promыshlennost'. 2018. N2. C. 24-29.
30. Kukhar Volodymyr. Experimental Research and Method for Calculation of ‘Upsetting-with-Buckling’ Load at the Impression-Free (Dieless) Preforming of Workpiece. Volodymyr Kukhar, Viktor Artiukh, Andrii Prysiazhnyi and Andrey Pustovgar. E3S Web of Conference (HRC 2017). Vol. 33, 02031. 2018.
31. Jiang Z.Y. Analysis of tribological feature of the oxide scale in hot strip rolling. Z.Y. Jiang, J. Tang, W. Sun, A.K. Tieu, D. Wei. Tribology International. 43. 2010. pp. 1339–1345.
32. Jae-min Lee. Spallation analysis of oxide scale on low carbon steel. Jae-min Lee, Wooram Noh, Deuk-Jung Kim, Myoung-Gyu Lee. Materials Science & Engineering A 676. 2016. pp. 385–394.