Mikosianchyk O.А., Mnatsakanov R.G., Kalinichenko V.I., Kushchev A.V. Еvaluation of energy, rheological and anti-wear characteristics of the contact under rolling with variable slip

  • О.А. Микосянчик
  • Р.Г. Мнацаканов
  • В.И. Калиниченко
  • А.В. Кущев

Abstract

Defined the regularities of change in the specific work of friction under lubrication outage from the secondary type structures formed on the contact surfaces in rolling conditions with different degrees of slippage. Determined kinetics of en-ergy, lubrication and rheological characteristics of the contact under grasping of the contact surfaces. The effect of the spe-cific work of friction, secondary structures, degree of hardening – softening of the surface layers of the metal, the intensity of saturation of the active elements in the surface layers of metal on wear resistance of the friction pairs are examined. Keywords: secondary structure, specific work of friction, wear, rheological properties, microhardness.

References

1. Rymuza C. Energy concept of the coefficient of friction. С. Rymuza. Wear.1996, Vol.199,P.187–196.
2. Chen Q. A computational study of frictional heating and energy conversion during sliding processes. Q. Chen, D.Y. Li. Wear. 2005, Vol.259, P.1382–1391.
3. Elalem, K. Modeling abrasive wear of homogeneous and heterogeneous materials, K. Elalem, D.Y. Li, M.J. Anderson, S. Chiovelli. ASTM STP, 2001, Vol.1339, P.90–104.
4. Chen Q. Investigation on the mechanisms of corrosive wear process of alloy with a micro-scale dy-namic model / Q. Chen, D.Y. Li. Mater. Sci. Eng. A., 2004, Vol.369, P.284–293.
5. Jahangiri M. Investigation of the Slipping Wear based on the Rate of Entropy Generation. M. Ja-hangiri. Journal of Modern Processes in Manufacturing and Production. 2014, Vol. 3, No. 1, P.47–57.
6. Colaco R. An energy-based model for the wear of UHMWPE. R. Colaco, M.P. Gispert, A.P. Serrob, B. Saramago. Tribol. Lett. 2007, Vol. 26, P.119–124.
7. Nurnberg K.E. Simulation of wear on sheet metal forming tools—An energy approach. K.E. Nurn-berg, G. Nurnberg, M. Golle, H. Hoffmann. Wear. 2008, Vol. 265, P.1801–1807.
8. Bershadsky L.I. On self-organizing and concept of tribosystem. L.I. Bershadsky. J. Frict. Wear. 1992, Vol.13, P.101–114.
9. Klamecki B.E. An entropy-based model of plastic deformation energy dissipation in sliding. B.E. Klamecki. Wear. 1984, Vol.96, P.319–329.
10. Zharov A.B. Blijanie strukturnyh prevrashhenij pri trenii na rabotosposobnost' soprjazhenija verh-nee kompressionnoe kol'co – gil'za cilindra avtomobil'nogo dizelja. A.V. Zharov, V.G. Novikov, A.A. Pavlov. Dvigateli vnutrennego sgoranija. 2008, №2, P.83-86.
11. Żurowski W. Structural factors contributing to increased wear resistance of steel friction couples. W. Żurowski. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2012, Vol.14 (1), P.19–23.
12. Gershman I. S. Self-Organization during Friction of Slide Bearing Antifriction Materials, I. S. Gershman, A. E. Mironov, E. I. Gershman, G. S. et al. Entropy. 2015, Vol.17, P.7967–7978.
13. Voronin S.V. Increase in resource of slider bearings by means of formation intensification of boundary lubricating layer. S.V.Voronin, I.S.Grunyk, V.V.Tkach. Nauka I studia: Przemysl. 2013, № 7(75), P.18–31.
14. Pogrebnjak A. D. Osobennosti termodinamicheskih processov na kontaktnyh poverhnostjah mnogokomponentnyh nanokompozitnyh pokrytij s ierarhicheskim i adaptivnym povedeniem. A. D. Pogrebnjak, K. A. Djadjura, O. P. Gaponova. Metallofiz. novejshie tehnol. 2015, т. 37, № 7, P.899—919.
15. Kul'gavij E. A. Tribologіchnі strukturi v antifrikcіjnih sistemah. E.A. Kul'gavij. Problemi tertja ta znoshuvannja: nauk.-tehn. zb., K.: NAU, 2012, No 58, P. 26–31.
16. Schey J.A. Tribology in Metalworking - Friction, Lubrication and Wear. J.A. Schey. Metals Park, Ohio: American Society for Metals, 1983, 736p.
17. Heinicke, G. Tribochemistry. G. Heinicke.- Berlin.: Akademie-Verlag, 1984, 495 p.
18. Kajdas C. Importance of Anionic Reactive Intermediates for Lubricant Component Reactions with Friction Surfaces. C. Kajdas. Lubrication Science. 1994, Vol.6, P.203-228.
19. Battez A.H. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. A.H. Battez, J.L. Viesca, R. Gonzбlez et al. Wear. 2010, Vol.268, P.325–328.
20. Masabumi M. Prevention of oxidative degradation of ZnDTP by microcapsulation and verification of its antiwear performance. M. Masabumi, S. Hiroyasu, S. Akihito, K. Osamu. Tribology International. 2008, Vol.41, P.1097–1102.
21. Patent na korisnu model' №88748, MPK G 01 N 3/56 Pristrіj dlja ocіnki tribotehnіchnih harakter-istik triboelementіv. Mіkosjanchik O.O. u 2013 13450, zajavl. 19.11.13; opubl. 25.03.14, Bjul. №6, 4p.
22. Rajko M.V. Issledovanie smazochnogo dejstvija neftjanyh masel v uslovijah raboty zubchatyh pere-dach: dis. na soiskanie uchenoj stepeni doktora tehn. nauk: 05.02.04. Rajko M.V., K.: KIIGA, 1974, 369p.
23. Drozdov Ju.N. Protivozadirnaja stojkost' trushhihsja tel. Ju.N. Drozdov, V.G. Archegov, V.I. Smir-nov, M. Nauka, 1981, 140p.
24. Baldwin B.A. The effect of adsorption and molecular structure of antiwear additives on wear miti-gations. B.A. Baldwin. ASLE Transactions. 1985, Vol.28, №3, P.381-388.
25. Rybakova L.M. Struktura i iznosostojkost' metalla. L.M.Rybakova, L.I.Kuksenova. M.:Mashinostroenie, 1982, 212p.
26. Kosteckij B.I. Poverhnostnaja prochnost' materialov pri trenii. B.I. Kosteckij, I.G. Nosovskij, A.K. Karaulov. Kiev: Tehnіka, 1976, 296 p.
27. Kosteckij B.I. Mehanohimicheskie processy pri granichnom trenii. B.I. Kosteckij, L.I. Bershadskij, M.: Nauka, 1972, 170p.
Published
2016-11-12
How to Cite
Микосянчик, О., Мнацаканов, Р., Калиниченко, В., & Кущев, А. (2016). Mikosianchyk O.А., Mnatsakanov R.G., Kalinichenko V.I., Kushchev A.V. Еvaluation of energy, rheological and anti-wear characteristics of the contact under rolling with variable slip. Problems of Tribology, 81(3), 14. Retrieved from https://tribology.khnu.km.ua/index.php/ProbTrib/article/view/6
Section
Articles

Most read articles by the same author(s)