Wear resistance of aluminum alloy modified with SiC by laser surface treatment

  • M. Student Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine
  • Kh. Zadorozhna Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine
  • V. Gvosdetskii Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine
  • H. Veselivska Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine
  • H. Pokhmurska Institute of Composite Materials and Surface Technology, Germany
  • Y. Dzioba Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine
Keywords: aluminum alloy, laser-modified layers, carbide silicon, rigidly fixed abrasive, non-closed abrasive, wear resistance

Abstract

The work is devoted to establishing the effect of laser modification by SiC particles of the surface layers of 7075 aluminum alloy, on its wear resistance in friction conditions with a rigidly fixed and non-fixed abrasive. It has been revealed that with increasing linear energy of the laser beam, the thickness of the modified layer increases and the volume content of SiC particles in it increases. X-ray spectral and X-ray phase analysis of the layers modified with SiC particles confirmed the presence of silicon carbide particles and aluminum carbides in them. The speed of movement of the laser beam (linear energy of the beam) over the surface affects the structure and wear resistance of laser-modified layers as well as the heating of the substrate. In particular, with an increase in heat input from 740 to 1100 J/cm, the concentration of SiC particles increases by 25% in the modified layer, and the wear resistance during friction tests with a rigidly fixed abrasive by 1,7...2 times. It has been found that the wear resistance of the modified layer is almost not affected by the direction of friction (along or across the laser processing tracks), however, the ratio of adjacent tracks overlap significantly affects. Thus, the wear resistance of the modified layer under friction by a rigidly fixed abrasive increases with an increase in the size of SiC particles and their volume content, an increase in the linear energy of the laser beam and the tracks overlap ratio. When testing with a non-fixed abrasive, the trends in wear resistance remained, however, the influence of the factors analyzed above is much weaker

References

1. Корж В.М., Кузнєцов В.Д., Борисов Ю.С., Ющенко К.А. Нанесення покриття: Навчальний посібник. — Київ: Видавництво Арістей, 2005. — 204 с.
2. Ющенко К.А. Інженерія поверхні: підручник / К.А. Ющенко, Ю.С. Борисов, В.Д. Кузнецов, В.М. Корж. – К.: Наук. Думка. – 2007. – 557 с.
3. Г.В. Похмурська, М. М. Студент, В.І. Похмурський Газотермічні покриття. Навчальний посібник – Львів: «Простір-М», 2017. – 180 с.
4. Verfahrensentwicklung zum Laserdispergieren von Si-Hartstoffen in Aluminiumlegirungen zum par-tiellen Verschleisschutz / T.Hoenig, K.-J. Matthes, B.Wielage, H.Pokhmurska, H Podlesak // Schriftenreihe Werkstoffe und werkstofftechnische Anvendungen. – 2005. – Band 022. – S. 91-96.
5. Веденов А.А., Гладуш Г.Г. Физические процессы при лазерной обработке материалов М.: Энер-гоатомиздат, 1985. – 208 с.
6. Hu C., Xin H., Baker T.N. Formation of continuous surface Al-SiCp metal matrix composite by overlapping laser tracks on AA6061 alloy. Materials Science and Technology. 1996. Vol. 12, № 3. P. 227–232.
7. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix compo-sites: a comparative study / K. M. Shorowordi, T. Laoui, A. S. M. A. Haseeb, J. P. Celis, L. Froyen. Journal of Materials Processing Technology. 2003. Vol. 142, № 3. P. 738–743.
8. Improvement in wear resistance of hyper-eutectic Al–Si cast alloy by laser surface remelting / S. Tomida, K. Nakata, S. Shibata, I. Zenkouji, S.Saji. Surface and Coatings Technology. 2003. Vol. 169-170, № 2. P. 468–471.
9. Abboud J.H., West D.R.F. Microstructure of titanium injected with SiC particles by laser processing. Journal of Materials Science Letters. 1991. Vol. 10(19). P. 1149–1152.
10. Hegge H.J., Boetje J., de Hosson J.Th.M. Oxidation effects during laser cladding of aluminium with SiC/Al powders. Journal of Materials Science. 1990. Vol. 25, № 5. P. 2335–2338.
11. Formation of wear resistant Al-SiC surface composite by laser melt-particle injection process / D. Pantelis, A. Tissandier, P. Manolatos, P. Ponthiaux Materials Science and Technology. 1995. Vol.11, № 3. P. 299–303.
12. Hu C., Xin H., Baker, T.N. Formation of continuous surface Al-SiCp metal matrix composite by overlapping laser tracks on AA6061 alloy. Materials Science and Technology. 1996. Vol. 12, № 3. P. 227–232.
13. Laser cladding of Al-Si/SiC composite coatings: Microstructure and abrasive wear behavior / R. Anandkumar, A. Almeida, R. Vilar, V.Ocelik, J. Th.M. De Hosson. International Congress on Applications of Lasers and Electro-Optics. 2007. P. 972–980.
14. Microstructure and wear studies of laser clad Al-Si/SiC (p) composite coatings / R. Anandkumar, A. Almeida, R. Colaço, R. Vilar, V. Ocelik, J. Th. M. De Hosson. Surface & Coatings Technology. 2007. Vol. 201. P. 9497–9505.
15. Microstructure and Interface Characteristics of B4C, SiC and Al2O3 Reinforced Al Matrix Compo-sites: A Comparative Study / K. M. Shorowordi, T. Laoui, A. S. M. A. Haseeb, J. P. Celis and L. Froyen. Journal of Material Processing Technology. 2003. Vol. 142, № 3. P. 738–743.
16. Structure and properties of aluminum alloys modified with silicon carbide by laser surface treat-ment / H. V. Pokhmurs’ka, M. M. Student, N. R. Chervinska, Kh. R. Smetana, A. Wank, T. Hoenig, H. Podlesak. Materials Science. 2005. Vol. 41, №6. Р. 316–323.
17. Structure and wear resistance of aluminium alloys coated with surface layer laser-modified by silicon carbide/ M. Student, H. Pokhmurska, K. Zadorozhna, A. Dzyubyk, I. Khomych. Ukrainian Journal of mechanical engineering and materials science. 2018. Vol. 4, №1. Р.49–57.
18. Crystallographic Instrumentation. By L. A. Aslanov, G. V. Fetisov and J. A. K. Howard. Oxford University Press, Inc., New York. 1998. 309 p.
19. Microstructure and wear behavior of in-situ hypereutectic Al–high Si alloys produced by selective laser melting / N. Kang, P. Coddet, C.Chen, Y. Wang, H. Liao, C. Coddet. Materials & Design. (2016). Vol. 99, № 5. P. 120-126.
20. Wear and corrosion properties of the SiC reinforced surface layers in magnesium and aluminium alloys obtained by laser melt injection / H. Pokhmurska, B. Wielage, H. Podlesiak, Th. Grund, T. Hoenig, K.-J. Mathes, Student M., Chervinska N., Zadorozhna H. Laser Technologies in Welding and Materials Processing. – Katsiveli, Crimea, Ukraine. 2007. P. 112–115.
21. Задорожна Х. Р. Структура і властивості лазерно модифікованих карбідом кремнію поверхневих шарів алюмінієвих сплавів та їх абразивна зносостійкість. Матеріали XIII Міжнародної наук.-техн. конф. “АВІА-2017”, 19–21 квітня 2017, Київ, 2017. 19.51–19.55.
22. Зносостійкість лазерно модифікованих карбідом кремнію поверхневих шарів алюмінієвих сплавів / Х.Р. Задорожна, М.М. Студент, Г.В. Похмурська, C.І. Маркович. Зб. тез доповідей ХІ Всеукр. наук.-практ. конф. «Підвищення надійності машин і обладнання», 20–21 квітня 2017, – Кропивницький, 2017. С.40–43.
Published
2020-03-22
How to Cite
Student, M., Zadorozhna, K., Gvosdetskii, V., Veselivska, H., Pokhmurska, H., & Dzioba, Y. (2020). Wear resistance of aluminum alloy modified with SiC by laser surface treatment. Problems of Tribology, 25(1/95), 49-56. https://doi.org/https://doi.org/10.31891/2079-1372-2020-95-1-49-56
Section
Articles