Regularities of the influence of submicron ceramic powders TiO2, AlN, Cr2O3 on the tribological properties of a friction material

Authors

  • A.V. Leshok O.V.Roman Powder Metallurgy Institute, Minsk, Belarus
  • A.V. Dykha Khmelnitskyi National University

DOI:

https://doi.org/10.31891/2079-1372-2021-99-1-20-27

Keywords:

friction material, coefficient of friction, wear, ceramic particles, bronze.

Abstract

Friction units for automotive and special vehicles are designed to operate under boundary friction conditions. Modern vehicles contain friction assemblies that use friction materials. Currently, friction materials are actively used: based on thermosetting resins; pulp and paper-based materials; sintered powder materials; materials of carbon or carbon composition; materials with a ceramic matrix. The development of a unified understanding of the effect of the size and chemical nature of ceramic additives on the processes occurring in a friction material during friction is very important and can be obtained both on the basis of experimental and theoretical studies. The paper presents the results of a study of the effect of submicron TiO2, Cr2O3, AlN powders with a size of 0.2-0.5 microns on the tribotechnical properties of a frictional material based on copper intended for operation under boundary friction conditions. It was found that when using the addition of Cr2O3 powder, the greatest increase in the value of the friction coefficient is noted - from 0.042 to 0.082, a slightly smaller increase in the friction coefficient is shown by the use of AlN and TiO2 defects - 0.042-0.074 and 0.042-0.060, respectively. The least wear of the friction material was obtained when using 3.0 vol. % aluminum nitride additive - 2.1 microns / km. Increasing the addition of any of the submicron powders by more than 7 vol. % leads to a significant decrease in wear resistance. This is due to the formation on the surface of the friction material of a modified layer containing ceramic particles and the metallic phase of the friction material. For the friction material, an unstable value of the friction coefficient and increased wear were recorded

References

1 Sharipov V.M. (2002) Proyektirovaniye mekhanicheskikh, gidromekhanicheskikh i gidroob"yomnykh peredach traktorov. - M.: MGTU MAMI. - 2002. – S.300.
2 Tarasik V. P. (1973) Friktsionnyye mufty avtomobil'nykh gidromekhanicheskikh peredach. – Minsk: Nauka i tekhnika. – S.320.
3 Gordeyev R.V., Pyzhev A.I. (2014) Rossiyskoye avtomobilestroyeniye: rezul'taty, tendentsii i perspektivy [Ekonomicheskiy analiz: teoriya i praktika]. (48). – S.26-35.
4 Al'gin V. B., Poddubko S.N (2019) Resursnaya mekhanika transmissiy mobil'nykh mashin. - Minsk: Belaruskaya navuka. – S.549.
5 Miroshnichenko A.N. (2014) Osnovy teorii avtomobilya i traktora [Tomsk: Izd-vo Tom. gos. arkhit.-stroit. un-ta]. – S.489.
6 Rumyantsev L.A. (2008) Ustroystva upravleniya planetarnoy korobkoy peremeny peredach [Stroitel'nyye i dorozhnyye mashiny]. - (11). – S.31-35.
7 Krasnevskiy, L.G., Poddubko S.N., Nikolayev YU.I. (2014) Razvitiye konstruktsiy gidromekhanicheskikh peredach bol'shoy moshchnosti [Aktual'nyye voprosy mashinovedeniya: sb. nauch. tr. OIM NAN Belarusi], - (3). - S.83–87.
8 Ilyushchanka A.Ph., Leshok A.V., Dyachkova L.N., Alekseenko N.A. (2019) Formation of the friction surface of a friction material based on copper depending on the amount of tin under lubrication condition [10-th International conference Balttrib, 14-16 November 2019, Vytautas Magnus University Lithuanian Scientific Society Department “Tribologija” Akademija, Kaunas, Lithuania]. - Pp.100-106.
9 Ilyuschenko A.Ph., Leaghok A.V., Rogovoy A.N., Rudakovsky V.O. (2017) Application of sintered powder material FM-15 in the clutch coupling "Belarus-3522" tractors [Agricultural engineering]. – (49). - P.56-62.
10 Fedorchenko I. M., Pugina L.I. (1980) Kompozitsionnyye spechennyye antifriktsionnyye materialy [Nauk. Dumka]. - S.404.
11 Copper alloy powder, sintered copper alloy body, and brake lining for use in high-speed railways: pat.: US20160047016A1 / Futoshi Katsuki, Fumio Ishimoto, Osamu Kanda. – 18.02.2016.
12 Friction material containing brass powders: pat.: US5324592A / Fred Blankenhagen, Hermann Putz. – 28.06.1994.
13 Sintered friction material for high-speed railway: pat.: US20140109723A1 / Fumio Ishimoto, Futoshi Katsuki, Kazutaka Asabe. – 24.04.2014.
14 Sintered friction material: pat.: US20200038959A1 / Manabu Kubota, Naomitsu Mizui, Fumio Ishimoto. – 06.02.2020.
15 Sintered friction material for a friction lining: pat.: US20170363167A1 / Zoltan Csanadi, Bruno Tourneret, Peter Echtler. – 02.04.2019.
16 Sintered friction material for railway vehicles and method for producing the same: pat.: US20190292634A1 / Manabu Kubota, Kazutaka Asabe, Yuki Ichikawa, Takeshi Nakano. – 26.09.2019.
17 Sintered material for a magnetic track brake.: pat. US6648108B2 / Eckart Saumweber, Wolfgang Schröer, Wolfgang Valentin. –
18.11.2003. 18 Mashkov, YU. K. (2013) Tribofizika metallov i polimerov [Omsk : Izd-vo OmGTU]. -2013. – 240 s.
19 Tarasov A.B. (2016) Sintez, struktura i funktsional'nyye svoystva nanostrukturirovannogo dioksida titana, poluchennogo geterogennym gidrolizom tetrakhlorida titana v aerozol'nykh sistemakh [dis. … kand. khim. nauk: 02.00.04]. – Chernogolovka. – 123 l.
20 Kozhina, L.F. (2017) Khrom i yego soyedineniya [Saratov]. - 48 s.
21 Arkhipov D.I. (2017) Regulirovaniye dispersnosti nanoporoshkov dioksida khroma putom modifitsirovaniya komponentami Mo-Sb, W-Sb, Mo-Sb-Fe, Sn-Te, Sn-Te-Fe [dis. … kand. tekhn. nauk : 05.16.08]. – 132 l.
22 Kudyakova V.S. (2019) Razrabotka tekhnologii stabilizatsii kubicheskikh modifikatsiy nitrida alyuminiya [dis. … kagd. tekhn. nauk : 05.17.11]. – Yekaterinburg. - 154 l.
23 Fedorchenko I.M. (1976) Issledovaniye materialov dlya tormoznykh i peredatochnykh ustroystv [Kiyev.: Naukova dumka]. – 240 s.
24 Fedorchenko I. M., Kryachek V. M., Panaioti I. I. (1975) Sovremennyye friktsionnyye materialy [Naukova dumka, Kiyev]. – s.336.
25 Bowden F.P. Tabor D. (1950) The friction and lubrication of solids [Clarendon press, Oxford]. – 424 p.
26 Girshov V.L., Kotov S.A., Tsemenko V.N. (2010) Sovremennyye tekhnologii v poroshkovoy metallurgii [SPb.: Izd-vo Politekhn. Un-ta]. - 385 s.
27 Bershadskiy L.I. (1990) Strukturnaya termodinamika tribosistem [Kiyev: Znaniye]. – 245s.
28 Kostetskiy B.I., Natanson M.E., Bershadskiy L.I. (1972) Mekhano-khimicheskiye protsessy pri granichnom trenii. [M.: Nauka]. - 1972. – 170s.

Downloads

Published

2021-03-19

How to Cite

Leshok, A., & Dykha, A. (2021). Regularities of the influence of submicron ceramic powders TiO2, AlN, Cr2O3 on the tribological properties of a friction material. Problems of Tribology, 26(1/99), 20–27. https://doi.org/10.31891/2079-1372-2021-99-1-20-27

Issue

Section

Articles