High-carbon steel: microstructure and abrasive wear resistance of heat affected zone after welding with fast cooling

  • M.N. Brykov "Zaporizhzhya Polytechnic" National University
  • V.G. Efremenko Priazovskyi State Technical University
  • M.Yu. Osipov "Zaporizhzhya Polytechnic" National University
  • A.E. Kapustyan "Zaporizhzhya Polytechnic" National University
  • T.A. Akrytova "Zaporizhzhya Polytechnic" National University
  • Yu. A. Kalinin PrJSC “Zaporozhtransformator"
Keywords: high-carbon steel, welding, fast cooling, austenite, martensite, bainite, abrasive wear resistance, microstructure

Abstract

The goal of this work is to estimate the abrasive wear resistance of heat affected zone (HAZ) after welding high-carbon low-alloy steel 120Mn3Si2 with fast cooling. The following benchmark data were used: microstructures of HAZ of 120Mn3Si2 steel after welding with cooling in water; abrasive wear resistance of different microstructure constituents of 120Mn3Si2 steel in two-body abrasive wear conditions. It is shown that high abrasive wear resistance of material in HAZ is provided in the vicinity of fusion line. The reason is unstable retained austenite which appears in HAZ as a result of quenching at fast cooling right after welding. The wear resistance of material in HAZ is altered by microstructural changes from austenite to austenite+martensite and finally martensite. The martensitic zone is about 0.5 mm wide and it is followed by zone of tempering of initial structure of steel. Zone of tempering is 1.5-2.0 mm wide and is the only zone of low abrasive wear resistance in HAZ of 120Mn3Si2 steel welded with fast cooling. Welding of 120Mn3Si2 steel with fast cooling in water results in welding joints which have as high wear resistant as the base material or even higher. This enables manufacturing flat welded elements with high wear-resistance and large surface area

References

1. Holmberg, K., Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284.
2. Holmberg, K., Kivikytö-Reponen, P., Härkisaari, P., Valtonen, K., Erdemir, A. Global energy consumption due to friction and wear in the mining industry. Tribology International 2017, 115, 116–139. https://doi.org/10.1016/j.triboint.2017.05.010
3. Terva, J., Kuokkala, V.-T., Valtonen, K., Siitonen, P. Effects of compression and sliding on the wear and energy consumption in mineral crushing. Wear 2018, 398–399, 116–126.
4. Totten, G.E. (Ed.). Friction, Lubrication, and Wear Technology. ASM International 2017.
5. Bogachev I.N., Mincz R.I. Kavitaczionnoe razrushenie zhelezouglerodistykh splavov. M., Sverdlovsk : Mashgiz, 1959. 111 s.
6. Malinov L. S., Malinov V. L. Ekonomnolegirovannye splavy s martensitnymi prevrashheniyami i uprochnyayushhie tekhnologii : monografiya. Khar`kov : NNCz KhFTI, 2007. 346 s.
7. Chejlyakh, A. P. Ekonomnolegirovannye metastabil`nye splavy i uprochnyayushhie tekhnologii : monografiya. Mariupol` : PGTU, 2009. 483 s.
8. Filippov M. A., Litvinov V. S., Nemirovskij Yu. R. Stali s metastabil`nym austenitom. M. : Metallurgiya,1988. 257 s.
9. Popov V. S., Brykov N. N., Dmitrichenko N. S. Iznosostojkost` pressform ogneupornogo proizvodstva. M. : Metallurgiya, 1971. 160 s.
10. Schastlivczev V. M., Filippov M. A. Rol` princzipa metastabil`nosti austenita Bogacheva-Mincza pri vybore iznosostojkikh materialov. Metallovedenie i termicheskaya obrabotka metallov. 2005. # 1, S.6-9.
11. Brykov M. N. Abrazivnoe iznashivanie zhelezouglerodistykh splavov. Trenie i iznos. 2006. # 1, S. 105-109.
12. Brykov M. N., Andrushhenko M. I., Kulikovskij R. A. Vliyanie legirovaniya na iznosostojkost` zhelezouglerodistykh splavov pri abrazivnom iznashivanii. Novi materiali i tekhnologiyi v metalurgiyi ta mashinobuduvanni. 2006. # 2, S. 59-62.
13. Hesse O., Liefeith J., Kunert M., Kapustyan A., Brykov M., Efremenko V. Bainit in Stählen mit hohem Widerstand gegen Abrasivverschleiß. Tribologie + Schmierungstechnik. 2015. V 63. № 2, S. 5-13.
14. Brykov M. N. Iznosostojkost` bejnita pri abrazivnom iznashivanii. Problems of Tribology. 2015. # 1, S.113-118.
15. Bhadeshia H. K. D. H. Nanostructured bainite. Proc. R. Soc. A. 2010. V 466, P. 3-18.
16. Gabarello F. G., Miller M. K., Garcia-Mateo C. Opening previously impossible avenues for phase transformation in innovative steels by atom probe tomography. Materials Science and Technology. 2014. V 30, P. 1034-1039.
17. Jellinghaus W., Anregung der Zwischenstufen-Umwandlung des Stahles durch kleine Mengen von a-Eisen. Arch. Eisenhütt. 1952. V 23, P. 459-470.
18. Kalinin Yu. A., Petrishinecz I., Efremenko V. G., Kapustyan A. E., Brykov M. N. Vliyanie izotermicheskoj obrabotki na mikrostrukturu zakalyonnoj na austenit vysokouglerodistoj nizkolegirovannoj stali. Visnik KhNADU. 2020. T 1. vip. 88, S. 58-66.
19. Microstructure and properties of heat affected zone in high-carbon steel after welding with fast cooling in water / M.N. Brykov, I. Petryshynets, M. Džupon, Yu. A. Kalinin, V. G. Efremenko, N.A. Makarenko, D. Yu. Pimenov, F. Kováč // Materials. 2020. 13(22). 5059.
20. Efremenko V.G. Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite / V.G. Efremenko, O. Hesse, T. Friedrich, M. Kunert, M.N. Brykov, K. Shimizu, V.I. Zurnadzhy, P. Šuchmann // Wear. 2019. V. 418-419, P. 24-35.
21. Brykov M.N., Efremenko V.G., Efremenko A.V. Iznosostojkost` stalej i chugunov pri abrazivnom iznashivanii : Nauchnoe izdanie / M.N.Brykov, V.G.Efremenko, A.V.Efremenko. Kherson : Grin` D.S., 2014. 364 s.
22. Khesse O. Iznosostojkost` obezuglerozhennogo sloya vysokouglerodistoj nizkolegirovannoj stali v ekstremal`nykh usloviyakh treniya / O. Khesse, M. Kunert, V.G. Efremenko, K. Shimiczu, M.N. Brykov, A.E. Kapustyan // Naukovi notatki. 2017. Vip. 58, S. 301-307.
23. Struktura okoloshovnoj zony zakalyonnoj vysokouglerodistoj stali posle svarki s uskorennym okhlazhdeniem / Yu. A. Kalinin, A. A. Shumilov, I. Petrishinets, V. G. Efremenko, M. N. Brykov // Novi materiali i tekhnologiyi v metalurgiyi ta mashinobuduvanni. 2019. # 1, S. 31-36.
Published
2021-03-21
How to Cite
Brykov, M., Efremenko, V., Osipov, M., Kapustyan, A., Akrytova, T., & Kalinin, Y. A. (2021). High-carbon steel: microstructure and abrasive wear resistance of heat affected zone after welding with fast cooling. Problems of Tribology, 26(1/99), 59-65. https://doi.org/https://doi.org/10.31891/2079-1372-2021-99-1-59-65
Section
Articles