System analysis of friction and wear processes when using fullerene compositions in lubricants
DOI:
https://doi.org/10.31891/2079-1372-2021-101-3-15-25Keywords:
fullerenes; fullerene solvent; fullerene compositions; tribosystem structure; dissipation speed; electrostatic field of the friction surface; deformation rate; volumetric wear rate; coefficient of frictionAbstract
The system-structural approach in researches of processes of friction and wear at application of fullerene compositions in lubricants is proved in the work. It is proposed to use a multilevel approach to study and model the processes of deformation of the surface layers of movable and fixed triboelements and the formation on energy-activated surfaces of wear-resistant structures containing fullerene molecules. The essence of the approach is to use multi-scale research methods to build mathematical models within a single research structure. Due to the fact that tribosystems differ in the integrity of the interconnected elements included in them, it is assumed that all processes occur at three hierarchical levels. At this level, they interact with each other and exchange energy and matter.
Input and output flows in studies of tribosystems are formulated. It is shown that the input streams include design parameters of the tribosystem, technological parameters, operating parameters. These parameters form the flow of matter, energy and information, which is the input effect on the tribosystem. The output flow from the tribosystem are the parameters: volumetric wear rate I, dimension m3/hour; friction losses, which are estimated by the coefficient of friction f, dimensionless quantity. The output stream is the information flow of the tribosystem. When solving contact problems, this allows to take into account not only the level of stresses, but also the speed of deformation in the materials of the surface layers, as well as the depth of deformation, which in the models will take into account the volume of deformed material.Depending on the tasks and requirements for their solution, the use of different methodological approaches for modeling is justified. It is shown that the application of mathematical models in the modeling of tribological processes depends on the correct choice of technical constraints that determine the range of optimal solutions
References
2. Yamada S. Dynamic Transitions in Molecularly Thin Liquid Films under Frictional Sliding // Langmuir, 2008, 24, p. 1469-1475. https://doi.org/10.1021/la701714g [English]
3. Thompson P. A., Robbins M. O. Origin of Stick-Slip Motion in Boundary Lubrication // Science, 1990, Vol. 250, p. 792-794. DOI: 10.1126/science.250.4982.792 [English]
4. Thompson P. A., Grest G. S., Robbins M. O. Phase transitions and universal dynamics in confined films // Phys. Rev. Lett., 1992, 68, DOI:https://doi.org/10.1103/PhysRevLett.68.3448 [English]
5. Khomenko A.V., Lyashenko YA.A. Statisticheskaya teoriya granichnogo treniya atomarno-gladkikh tvordykh poverkhnostey pri nalichii smazochnogo sloya // UFN. 2012, T. 182, № 10, s. 1081–1110 DOI: https://doi.org/10.3367/UFNr.0182.201210f.1081 [Russian]
6. Satomi Ohnishi, Daisaku Kaneko, Jian Ping Gong . et al. Influence of Cyclohexane Vapor on Stick-Slip Friction between Mica Surfaces // Langmuir, 2007, 23, р. 7032-7038. https://doi.org/10.1021/la0632732 [English]
7. Dudko O. K., A.E. Filippov А.Е., J. Klafter J., Urbakh M. Chemical Control of Friction: Mixed Lubricant Monolayers // Tribol. Lett., 2002, 12, р. 217-227. https://doi.org/10.1023/A:1015439010872 [English]
8. Granick S. Motions and Relaxations of Confined // Liquids Science, 1991. Vol. 253, p. 1374-1379. DOI: 10.1126/science.253.5026.1374 [English]
9. Yoshizawa H., Israelachvili J. Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules // Phys. Chem., 1993, 97, р. 11300-11313. https://doi.org/10.1021/j100145a031 [English]
10. Coussot P., Nguyen Q.D., Huynh H.T.,Bonn D. Avalanche Behavior in Yield Stress Fluids // Phys. Rev. Lett., 2002, 88, DOI:https://doi.org/10.1103/PhysRevLett.88.175501 [English]
11. Gee M. L., McGuiggan P.M., Israelachvili J.N. Liquid to solidlike transitions of molecularly thin films under shear // Chem. Phys., 1990, 93, https://doi.org/10.1063/1.459067 [English]
12. Filippov A. E., Klafter J., Urbakh M. Confined Molecules under Shear: From a Microscopic Description to Phenomenology // Phys. Rev. Lett., 2001, 87, DOI:https://doi.org/10.1103/PhysRevLett.87.275506 [English]
13. Kachanov L. M., Foundations of the Theory of Plasticity // North-Holland, Amsterdam, 1971. – 482 р. [English]
14. Khomenko A. V. Effect of correlated temperature fluctuations on the phase dynamics in an ultrathin lubricant film // Tech. Phys., 2007, 52, р. 320-327, https://doi.org/10.1134/S1063784207030061 [English]
15. Aranson I. S., Tsimring L. S., Vinokur V. M. Stick-slip friction and nucleation dynamics of ultrathin liquid films // Phys. Rev. B, 65, 2002, DOI:https://doi.org/10.1103/PhysRevB.65.125402 [English]
16. Lyashenko YA.A. Formirovaniye neodnorodnykh prostranstvennykh struktur v granichnom smazoch-nom sloye v protsesse treniya / Prikladnaya mekhanika i tekhnicheskaya fizika. 2016. T. 57, №1, s. 156-166. DOI: 10.15372/PMTF20160115 [Russian]
17. Popov V. L., Psakhie S. G., Dmitriev A., et al. Quasi-fluid nano-layers at the interface between rubbing bodies: simulations by movable cellular automata // Wear. 2003. V. 254, N 9, р. 901–906. [English]
18. Dykha, A., & Makovkin, O. (2019). Physical basis of contact mechanics of surfaces. In Journal of Physics: Conference Series (Vol. 1172). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1172/1/012003 [English]
19. Dykha, A., Zaspa, Y., Slashchuk, V. Triboacoustic Control of Fretting. Journal of Friction and Wear 39(2), 169–172 (2018). https://doi.org/10.3103/S1068366618020046 [English]
20. Vojtov V. A., Zakharchenko M.B. Modelirovaniye protsessov treniya i iznashivaniya v tribosiste-makh v usloviyakh granichnoy smazki. Chast' 1. Raschet skorosti raboty dissipatsii v tribosistemakh // Problemi tribologíí̈. – 2015. – №1. – S. 49– 57 [Russian]
21. Vojtov V.A., Zakharchenko M.B. Yntehralʹnyy parametr otsenky trybolohycheskykh svoystv sma-zochnykh materyalov // Zbirnyk naukovykh pratsʹ Ukrayinsʹkoyi derzhavnoyi akademiyi zaliznychnoho transportu. Tom 2. – Kharkiv: UkrDAZT, 2015. – Vyp. 151. – S. 5– 10 [Russian]
22. Vojtov V. A., Biekirov A. Sh., Voitov A. V., Tsymbal B. M. Running-in Procedures and Performance Tests for Tribosystems // Journal of Friction and Wear, Allerton Press. 2019, Vol. 40, No. 5, pp. 376–383. DOI: 10.3103/S1068366619050192 [English]
23. Reyner M. Reologiya. –M.: Nauka, 1965. – 223 s. [Russian]
24. Vojtov V.A., Zakharchenko M.B. Modelirovaniye protsessov treniya iznashivaniya v tribosi-stemakh v usloviyakh granichnoy smazki. Chast' 2. Rezul'taty modelirovaniya // Problemi tribologíí̈. – 2015. – № 2. – S. 36-45 [Russian]
25. Vojtov V.A., Zakharchenko M.B. Metodyka otsenky reolohycheskykh svoystv struktury sopryazhen-nykh materyalov v trybosysteme // Visnyk Kharkivsʹkoho natsionalʹnoho tekhnichnoho universytetu silʹsʹkoho hospodarstva im. P. Vasylenka. – Kharkiv: KHNTUS·H, 2015. – Vyp. 158: Resursozberihayuchi tekhnolohiyi, materialy ta obladnannya u remontnomu vyrobnytstvi. – S. 64-69 [Russian]