Современные исследования подшипниковых трибосистем: обзор

Автор(и)

  • O. Dykha Khmelnitsky National University, Ukraine
  • V. Dytynyuk Khmelnitskiy National University, Khmelnitskiy, Ukraine
  • S. Posonsky Khmelnitskiy National University, Khmelnitskiy, Ukraine
  • L. Zelenska Khmelnytskyi Polytechnic College by Lviv Polytechnic National,Ukraine

DOI:

https://doi.org/10.31891/2079-1372-2019-92-2-67-74

Ключові слова:

опорные подшипники скольжения, износ, трение, контактные задачи, лабораторные испытания

Анотація

Подшипники скольжения  являются одним из важных узлов трения современных машин, обеспечивающих их длительную работу. Опоры скольжения определяют точность исполнительных движений рабочих органов машин. Создание  и исследование надежных и точных подшипников скольжения является  важной проблемой машиностроения. В данном обзоре представлены результаты исследований подшипников скольжения, опубликованные за последние годы в специализированных научных журналах. Рассмотрены вопросы создания эффективных конструкий подшипниковых узлов, в том числе за счет использования новых гибридных материалов и конструкций. Большое внимание уделено проблеме изнашивания подшипников и снижения коэффициента трения. Отдельно рассмотрены вопросы компьютерного моделирования условий работы и проектирования конструкций. Рассмотрены современные подходы расчетной оценки подшипников, решения контактных задач. Данный обзор позволяет ученым и инженерам делать правильные постановки задач при планировании дальнейших исследований подшипниковых трибо систем.

Посилання

1. Ali Rezaeia, WimVan Paepegema, Patrick De Baets, Wouter Ost. Adaptive finite element simulation of wear evolution in radial sliding bearings. Wear. Volume 296, Issues 1–2, 660-671, (2012).
2. Florian König, Achraf Ouald Chaib, Georg Jacobs, Christopher Sous. A multiscale-approach for wear prediction in journal bearing systems – from wearing-in towards steady-state wear. Wear, Volumes 426–427, Part B, 2019, 1203-1211
3. V. T. Oksanen, A. J. Lehtovaara, M. H. Kallio. Load capacity of lubricated bismuth bronze bimetal bearing under elliptical sliding motion. Wear, Volumes 388–389, 2017, 72-80
4. Nimeshchandra S. Patel, D. P. Vakharia, G. M. Deheri, H. C. Patel. Experimental performance analysis of ferrofluid based hydrodynamic journal bearing with different combination of materials..Wear, Volumes 376–377, Part B, 2017, 1877-1884.
5. Lidia Galda, Jaroslaw Sep, Artur Olszewski, Tomasz Zochowski. Experimental investigation into surface texture effect on journal bearings performance.Tribology International, Volume 136, 2019, 372-384
6. Surojit Poddar, N. Tandon. Detection of particle contamination in journal bearing using acoustic emission and vibration monitoring techniques.Tribology International, Volume 134, 2019, 154-164.
7. Thomas Hagemann, Christopher Zeh, Hubert Schwarze. Heat convection coefficients of a tilting-pad journal bearing with directed lubrication.Tribology International, Volume 136, 2019, 114-126.
8. Guo Xiang, Yanfeng Han, Jiaxu Wang, Jiefu Wang, Xiaokang Ni. Coupling transient mixed lubrication and wear for journal bearing modeling. Tribology International, Volume 138, 2019, 1-15.
journal bearing and thrust bearing.
9. Shaoyu Zhu, Jun Sun, Biao Li, Xiaoyong Zhao, Guixiang Zhu. Stochastic models for turbulent lubrication of bearing with rough surfaces. Tribology International, Volume 136, 2019, 224-233.
10. Shuhui Cui, Le Gu, Liqin Wang, Bo Xu, Chuanwei Zhang. Numerical analysis on the dynamic contact behavior of hydrodynamic journal bearings during start-up. Tribology International, Volume 121, 2018, 260-268.
11. T. Illner, D. Bartel, L. Deters. Determination of the transition speed in journal bearings under consideration of bearing deformation. Tribology International, Volume 82, Part A, 2015, 58-67.
12. Fillon, M., Wodtke, M. & Wasilczuk, M. Friction (2015) 3: 266. https://doi.org/10.1007/s40544-015-0092-4
13. Thomas, E., Pascovici, M.D. & Glovnea, R.P. Friction (2015) 3: 287. https://doi.org/10.1007/s40544-015-0098-y.
14. Xue, Y., Chen, J., Guo, S. et al. Friction (2018) 6: 297. https://doi.org/10.1007/s40544-018-0206-x.
15. Varenberg, M., Kligerman, Y., Halperin, G. et al. Friction (2018). https://doi.org/10.1007/s40544-018-0255-1
16. Sitae Kim and Alan B. Palazzolo.Pad–Pivot Friction Effect on Nonlinear Response of a Rotor Supported by Tilting-Pad Journal Bearings.J. Tribol 141(9), 091701, 2019, doi: 10.1115/1.4043971
17. Faisal Rahmani, R. K. Pandey and J. K. Dutt. Performance Studies of Powder-Lubricated Journal Bearing Having Different Pocket Shapes at Cylindrical Bore Surface. J. Tribol 140(3), 031704, 2018, doi: 10.1115/1.4038678
18. Hiroyuki Yamada, Hiroo Taura and Satoru Kaneko. Static Characteristics of Journal Bearings With Square Dimples . J. Tribol 139(5), 051703, 2017, doi: 10.1115/1.403577
19. Pape, F., Neubauer, T., Maiß, O. et al. Tribol Lett (2017) 65: 70. https://doi.org/10.1007/s11249-017-0855-3
20. Vladescu, SC., Marx, N., Fernández, L. et al. Tribol Lett (2018) 66: 127. https://doi.org/10.1007/s11249-018-1080-4
21. Aliyu, I.K., Mohammed, A.S. & Al-Qutub, A. Tribol Lett (2018) 66: 144. https://doi.org/10.1007/s11249-018-1096-9
22.Singh, H., Pulikollu, R.V., Hawkins, W. et al. Tribol Lett (2017) 65: 81. https://doi.org/10.1007/s11249-017-0861-5
23. Troy Snyder and Minel Braun. A CFD-Based Frequency Response Method Applied in the Determination of Dynamic Coefficients of Hydrodynamic Bearings. Part 1: Theory. Lubricants 2019, 7(3), 23; https://doi.org/10.3390/lubricants7030023
24. Maximilian Prölß, Hubert Schwarze, Thomas Hagemann, Philipp Zemella and Philipp Winking Theoretical and Experimental Investigations on Transient Run-Up Procedures of Journal Bearings Including Mixed Friction Conditions. Lubricants 2018, 6(4), 105; https://doi.org/10.3390/lubricants6040105
25. Philip Croné , Andreas Almqvist and Roland Larsson. Thermal Turbulent Flow in Leading Edge Grooved and Conventional Tilting Pad Journal Bearing Segments—A Comparative Study. Lubricants 2018, 6(4), 97; https://doi.org/10.3390/lubricants6040097
26. Pradeep K. Gupta & Erwin V. Zaretsky. New Stress-Based Fatigue Life Models for Ball and Roller Bearings.cTribology Transactions, Volume 61, 2018 - Issue 2. pp. 304-324.
27 Chaowu Jin, Guochang Li, Yazhong Hu, Yuanping Xu & Longxiang Xu.. Identification of Mechanism Stiffness of Autoeliminating Clearance for Auxiliary Bearing. Tribology Transactions, Volume 62, 2019 - Issue 2
28. Lagunova, E.O. & Mukutadze, M.A. J. Frict. Wear (2019) 40: 88. https://doi.org/10.3103/S1068366619010112
29. Zernin, M.V., Mishin, A.V., Rybkin, N.N. et al. J. Frict. Wear (2017) 38: 242. https://doi.org/10.3103/S1068366617030163
30. Dmitrichenko, N.F., Milanenko, A.A., Hluhonets, A.A. et al. J. Frict. Wear (2017) 38: 126. https://doi.org/10.3103/S1068366617020076

##submission.downloads##

Опубліковано

2019-07-29

Як цитувати

Dykha, O., Dytynyuk, V., Posonsky, S., & Zelenska, L. (2019). Современные исследования подшипниковых трибосистем: обзор. Проблеми трибології, 24(2/92), 67–74. https://doi.org/10.31891/2079-1372-2019-92-2-67-74

Номер

Розділ

Статті

Статті цього автора (авторів), які найбільше читають

1 2 > >>