Thermodynamic substantiation of the direction of nonequilibrium processes in triadconjugations of machine parts based on the principles of maximum and minimum entropy

Authors

  • V.V. Aulin Central Ukrainian National Technical University , Ukraine
  • S.V. Lysenko Central Ukrainian National Technical University , Ukraine
  • A.V. Hrynkiv Central Ukrainian National Technical University , Ukraine
  • D.V. Holub Central Ukrainian National Technical University , Ukraine

DOI:

https://doi.org/10.31891/2079-1372-2022-104-2-55-63

Keywords:

triboconjugation of details, nonequilibrium processes, thermodynamics, synergetics, entropy, thermodynamic flow

Abstract

The article gives a thermodynamic substantiation of the direction of nonequilibrium processes in tribocouples of machine parts, in tribosystems, based on the principles of maximum and minimum entropy. It is clarified how nonequilibrium processes can be substantiated on the basis of the minimum and maximum function of entropy production: linear and nonlinear nonequilibrium processes and their different thermodynamics. The entropy production function is considered as a function of thermodynamic force flows and thermodynamic flows.

The theory of nonequilibrium processes is based on the Liouville equation for classical tribosystems, taking into account external influences or perturbations. It is shown that in thermodynamic processes in tribosystems the principle of entropy maximization is realized as the second principle of synergetics.

References

1. Aulin VV (2014). Fizychni osnovy protsesiv i staniv samoorhanizatsii v trybotekhnichnykh systemakh: monohrafiia [ Kirovohrad: TOV "KOD" ] 369 c.
2. Aulin VV (2015). Trybofizychni osnovy pidvyshchennia zosostiikosti detalei ta robochykh orhaniv silskohospodarskoi tekhniky [dys. ... Dr. Tech. Science: 05.02.04 ] 360 p.
3. Aulin V.V. (2016). Rol pryntsypiv maksymumu ta minimumu vyrobnytstva entropii v evoliutsiinomu rozvytku staniv trybosystem [Problems of tribology. №2] S.6-14.
4. Prigozhin I. (1960). Vvedenie v termodinamIku neravnovesnyih protsesov [M.: Izdatelstvo inostrannoy literaturyi] 127s.
5. Tsigler G. (1966) Ekstremalnyie printsipyi termodinamiki neobratimyih protsessov i mehanika sploshnoy sredyi [M.: Mir] 134s.
6. Bershadskiy L.I. (1990). Strukturnaya termodinamIka tribosistem [K:Znanie] 30s.
7. Martyushev L.M. (2010). Proizvodstvo entropii i morfologicheskiy perehodyi pri neravnovesnyih protsessah [avtoref. Dr. fiz.-mat. nauk spets: 01.04.14] 32s.
8. Martyushev L.M., Seleznev V.D. Printsip maksimalnosti proizvodstva entropii v fizike i smezhnyih oblastyah [Ekaterinburg: GOU VPO UGTU-UPI] 83 s.
9. Martyushev L., Seleznev V. (2006). Maximum entropy production principle in physics, chemistry and biology [Physics Reports. Vol. 426, Issue 1] P. 1-45.
10. Delas N.I. (2014). Printsip maksimalnosti proizvodstva entropii v evolyutsii makrosistem: nekotoryie novyie rezultatyi [Vostochno-Evropeyskiy zhurnal peredovyih tehnologiy. T.6, №4 (72)] S.16-23.
11. Dewar R.C. (2005) Maхimum entropy production and the fluctuation teorem [Journal of Physics A: Mathematical and General. Vol. 38, lssue 21] P.L371-L.381.
12. Niven R.K. (2009) Steady state of a dissipative flow-controlled system and the maximum entropy production principle [Physical Review E. Vol. 80, lssue 2] P.021113.
13. Groot S., Mazur P. (1964). Neravnovesnaya termodinamIka [M.: Mir] 456 s.
14. Niven R. K. (2009). Steady state of a dissipative flow–controlled system and the maximum entropy production principle [Physical Review E. Vol. 80, Issue 2] P. 021113.
15. Dewar, R. C. (2005). Maximum entropy production and the fluctuation theorem [Journal of Physics A: Mathematical and General. Vol. 38, Issue 21] P. L371–L381.
16. Simak V., Sumbera М., Zborovsky I. (1988). Entropy in Multiparticle Production and Ultimate Multiplicity Scaling [Phys. Lett. B. V.206] P. 159-162.
17. HuberP.J. Robast Statistics (1981). [N.Y.: Wiley]
18. Barrodale I., Erikson R. E. (1980). Algorithms for Least Square Linear Prediction and Maximum Entropy Spectral Analysis [Geophysics. V.5, No.3] P. 420.
19. Ozawa H., Ohmura A., Lorenz R. D., Pujol T. (2003). The second law of thermodynamicsand the global climate system: A review of the maximum entropy production principle [Reviews of Geophysics. Vol. 41, Issue 4] P. 1–24.
20. Kleidon A., Lorenz R.D. (2005). Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond, Springer Verlag, Heidelberg principle [Reviews of Geophysics. Vol. 41] P. 1018–1041.
21. Cejnar P., Jolie J. (1998). Wave-Function Entropy and Dynamical Symmetry Breaking in Interacting Boson Model [Phys. Rev. E. V.58, No. 1] P. 387-399.
22. Cejnar P., Jolie J. (1998). Dynamical-Symmetry Content of Transitional IBM-I Hamiltonian [Phys. Lett. B. V.420] P. 241-247.
23. Jaynes E. T., Levine R. D., Tribus M. (1979). Where do we Stand on Maximum Entropy?’ in The Maximum Entropy Formalism [M.I.T. Press, Cambridge] 105 p.
24. Vilson A.Dzh. (1978). Entropiynyie metodyi modelirovaniya slozhnyih sistem [M.: Nauka].
25. Budanov V.G. (2006). O metodologi sinergetiki [Voprosyi filosofii. №5] S.79-94.

Downloads

Published

2022-06-24

How to Cite

Aulin, V., Lysenko, S. ., Hrynkiv, A., & Holub, D. (2022). Thermodynamic substantiation of the direction of nonequilibrium processes in triadconjugations of machine parts based on the principles of maximum and minimum entropy. Problems of Tribology, 27(2/104), 55–63. https://doi.org/10.31891/2079-1372-2022-104-2-55-63

Issue

Section

Articles