Research of the vacuum thermocyclic nitrogen process in a plasma pulsing glow discharge
DOI:
https://doi.org/10.31891/2079-1372-2023-110-4-76-84Keywords:
vacuum thermocyclic nitriding, mathematical model, technological process, plasma, pulsating glow dischargeAbstract
As a result of the studies, the regularities of the influence of vacuum thermocyclic nitriding in a pulsating glow discharge plasma parameters on the microhardness, the diffusion saturation depth, the magnitude and distribution of residual stresses in the hardened layers of steel surfaces are established. Based on the use of expert assessment methods and the results of a series of screening experiments, optimization criteria (endurance limit and corrosion resistance) and controlled factors for mathematical modeling of the formation of strengthened ion-nitrated surface layers are determined. A mathematical model of the technology of the formation of reinforced surfaces of the vacuum thermocyclic nitriding in a pulsating glow discharge plasma according to the criteria of endurance and corrosion resistance is obtained. An analysis of the studies showed that there are no general conclusions and recommendations on the selection of optimal technological parameters of the vacuum thermocyclic nitriding in a pulsating glow discharge plasma that would be used for the practical application of this technology. These circumstances confirm the need for further study of the vacuum thermocyclic nitriding in a plasma of a pulsating glow discharge of vacuum thermocyclic nitriding in a pulsating glow discharge plasma technology and the feasibility of its optimization.
References
Kharchenko V.V., Lyashenko B.A., Kuriat R.I., Isakhanov G.V. (2012).Termocziklicheskoe azotirovanie kak sintez razrabotok NAN Ukrainy.[Thermocyclic nitriding as a synthesis of developments of the NAS of Ukraine] Sovrem. problemy` proizvodstva i remonta v promy`shlennosti i na transporte: mater. 12-go Mezhdun. nauch.-tekhn. seminara [Lying. problems of production and repair in industry and transport: Mater. 12th Int. scientific and technical workshop] (Svalyava, February 20-24, 2012). Kiev, ATM of Ukraine. S.287-290. [in Ukrainian]
Lyashenko B.A., Rutkovskij A.V. (2005). O dostoinstvakh tekhnologii vakuumnogo azotirovaniya. [On the advantages of vacuum nitriding technology] Oborudovanie i instrument. №12. Pp. 20-21. [in Ukrainian].
Lyashenko B.A., Khoczyanovskij A.O., Kumurzhi A.Yu. (2014) Povy`shenie prochnosti i iznosostojkosti metallicheskikh izdelij s pomoshh`yu impul`snoj metodiki naneseniya ionno-plazmenny`kh nitridny`kh pokrytij. [Improving the strength and durability of metal products using a pulsed method of applying ion-plasma nitride coatings]. Problemy` prochnosti, № 3. Pp. 155-163. [in Ukrainian].
Pat. 78071 Ukraine Sposib poverkhnevogo zmicznennya stalevikh detalej ionno-plazmovim azotuvannyam u pul`suyuchomu tli`yuchomu rozryadi: [Method for surface steel parts of ion-plasma nitrogen in a pulsating flash discharge]: 2013, Bull. No.5.
Rumshinskij, L.Z. (1971). Matematicheskaya obrabotka rezul`tatov e`ksperimenta. [Mathematical processing of experimental results. К.: Nauka. 192 p. [in Ukrainian].
Sklyarov, N.M. (1981). Konstruktivnaya prochnost` metallov [Tekst] [Structural Strength of Metals]. Metallovedenie i termicheskaya obrabotka metallov. №6. P. 8-12. [in Ukrainian].
Pisarenko G.S. (1994). Soprotivlenie materialov deformirovaniyu i razrusheniyu. Chast` 1 [Resistance to deformation and destruction of materials. Part 1]. K.: Naukova dumka. 286 p. [in Ukrainian].
Pisarenko G.S. (1986). Soprotivlenie materialov [Resistance of materials]. K.: Vishha shkola, 775 p. [in Ukrainian].