Vojtov V.A., Bekirov A.SH. Mathematical model of transition processes in tribosystems and results of modeling.
Keywords:
tribosystem, modeling, transient processes, running-in, wear rate, coefficient of friction, adequacy of the mathematical modelAbstract
A mathematical model of the dynamics of the transient processes of the wear rate and the coefficient of friction in tribosystems is developed. The equations of the dynamics of transient processes in the form of differential equations from the solutions of which it follows that the transient process in the tribosystem is described by second-order vibrational links. It is established that the nature of the transient process after application to the tribosystem of the input action depends on the gain factors and time constants, as well as the damping decrement values.
Experimental evaluation of the adequacy of simulation results to experimental data was carried out. The values of the simulation error are obtained when the main factors affecting the transient process are changed: the tribological properties of the lubricating medium; rheological properties of the structure of conjugate materials; form factor; surface roughness; load and slip speed. It was found that the maximum error in modeling the wear rate does not exceed the values eI = 11.9 ... 16.6 %, and the coefficient of friction ef = 13.0 ... 18.5 %. In this case, the maximum error value corresponds to the surface roughness factor.
References
2. Semenyuk N.F. Srednyaya vysota mikrovystupov sherokhovatoy poverkhnosti i plotnost' pyaten kontakta pri kontaktirovanii sherokhovatoy poverkhnosti s gladkoy. Treniye i iznos. 1986. T.7, №1. S. 85-91.
3. Terletzka, Semenjuk, Deierich. Modellierung des Kontaktes zweier rauher Körper. Wissenschaftliche Berichte Hochschule Zittau/Görlitz Nr. 1551 (1996), Heft 45. S. 151 – 165.
4. Semenjuk N. Entwicklung von Berechnungsverfahren der Reibungs- und Verschleißtheorie mit Hilfe des Modells stochastischer Felder: Diss. B an der Technischen Hochschule Zittau. Zittau, 1991.
5. Sorokatyy R.V. Analiz sovremennogo sostoyaniya metodov rascheta iznosa i prognozirovaniya resursa. Problemi tribologíí̈. 2007. №1. S. 23-36.
6. Sorokatyy R.V. Metod triboelementov. Khmel'nitskiy: KHNU, 2009. 242 s.
7. Voytov V.A., Isakov D.I. Modelirovaniye granichnogo treniya v tribosistemakh. Í. Metodika fizicheskogo modelirovaniya. Treniye i iznos. 1996. T.17, №3. S. 298-306.
8. Voytov V.A., Isakov D.I. Modelirovaniye granichnogo treniya v tribosistemakh. ÍÍ. Metodika matematicheskogo modelirovaniya statsionarnykh protsessov pri granichnom trenii. Treniye i iznos. 1996. T.17, №4. S. 456-462.
9. Voytov V.A., Isakov D.I. Modelirovaniye granichnogo treniya v tribosistemakh. ÍÍÍ. Matematicheskoye modelirovaniye nestatsionarnykh protsessov pri granichnom trenii. Treniye i iznos. 1996. T.17, №5. –S. 598-605.
10. Bekirov A.SH. Strukturnaya identifikatsiya matematicheskoy modeli perekhodnykh protsessov v tribosistemakh. Tekhníchniy servís agropromislovogo, lísovogo í transportnogo kompleksív, 2017, № 7. S. 109-120.
11. Bekirov A.SH. Parametricheskaya identifikatsiya matematicheskoy modeli perekhodnykh protsessov v tribosistemakh. Tekhníchniy servís agropromislovogo, lísovogo í transportnogo kompleksív, 2017, № 8. –S. 167-177.
12. Voytov V.A., Zakharchenko M.B. Modelirovaniye protsessov treniya iznashivaniya v tribosistemakh v usloviyakh granichnoy smazki. Chast' 1. Raschet skorosti raboty dissipatsii v tribosistemakh // Problemi tribologíí̈. 2015. № 1. S. 49-57.
13. Voytov V.A., Zakharchenko M.B. Modelirovaniye protsessov treniya iznashivaniya v tribosistemakh v usloviyakh granichnoy smazki. Chast' 2. Rezul'taty modelirovaniya. Problemi tribologíí̈. 2015. № 2. S. 36-45.